

LAND: Technologies to Precisely Land Payloads and Avoid Landing Hazards

NASA

Developing entry, descent and landing technology to enhance and enable small spacecraft to Flagship-class missions across the solar system

Ultra-Precise Velocity & Range

High-Resolution Surface Hazard Mapping

Terrain Relative Navigation

Plume-Surface-Interaction Mitigations

Dedicated Computing and Algorithms

Aggregated and Sustainable Sites on the Moon and Mars

Capabilities evolvable for many solarsystem destinations

<u>Enable</u> anytime landings in treacherous terrains and independent of lighting

<u>Reduce the risk</u> of the landing for human and robotic missions to many destinations

<u>Reduce operations time</u> for a rover or human to reach an interesting site

<u>Aggregate resources</u> in one surface region for missions requiring multiple landings

Landing Precision: Description of Envisioned Future

NASA

Develop Technologies to Precisely Land Payloads and Avoid Landing Hazards

EDL: Entry, Descent and Landing (solar bodies with atmospheres) DDL: Deorbit, Descent and Landing (airless solar bodies)
PL&HA: Precision Landing & Hazard Avoidance (general term for precise safe landing capabilities)

What are some of the challenges?

- Precise and safe landing is not yet possible away from Earth
- Human & robotic PL&HA differs no one-size-fits-all for all missions but capabilities are evolvable
- Human-class missions currently target 50-100m precision, whereas some robotic-class missions target 10-50m precision
- Anytime landing requires functionality independent of surface lighting conditions

Description of Capability targets

- Highly-controllable EDL/DDL systems (hardware and algorithms) increase entry & descent maneuverability to facilitate fuel-efficiency and significant landing-ellipse minimization
- Terrain relative navigation (TRN) facilitates propulsive/aero maneuvers to minimize landing ellipses and avoid large surface hazards identified in reconnaissance maps global navigation without GPS
- Precise velocity/range sensing facilitates soft landing and improves EDL/DDL navigation precision (current sensors are high size/mass/power, plus have high component/system-integration costs)
- High-resolution terrain mapping during descent and landing facilitates hazard detection (HD) and avoidance of surface features not identifiable within reconnaissance maps – can also improve TRN maps in real time
- Plume-Surface Interaction (PSI) mitigations facilitate improved landing sensing for soft, precise touchdown and minimize debris risks to the lander and other aggregated surface assets
- Dedicated PL&HA computing minimizes processing-overload risks to primary flight computer during the critical EDL/DDL phase

Landing Precision: Status Quo Vs. PL&HA

NASA

Landing Precision: State of the Art (SOA)

NASA

Develop Technologies to Precisely Land Payloads and Avoid Landing Hazards

credit: JPL

credits: JPL

- Mars 2020 Mission successfully landed the Perseverance rover within a 7.7 x 6.6 km landing ellipse on February 18, 2021
- EDL system: Viking-style entry body, parachute-deployment range trigger, Apollo-based entry guidance (bank-angle reversal maneuvers), camera-based TRN (JPL Lander Vision System), and JPL Doppler radar (velocity and range)
- JPL TRN fuses camera images and IMU data for precise position localization relative to a reconnaissance map → enabled landing at a location identified as safe within reconnaissance maps (passive optical system requires lighted terrain on descent)

Note on TRN SOA: multiple commercial, passive-optical TRN systems are in development with planned demos onboard two different 2022 robotic lunar landers

Landing Precision: Development Strategy

Develop Technologies to Precisely Land Payloads and Avoid Landing Hazards

Overarching Goal

Develop, infuse, and commercialize technologies applicable to robotic and human landers that become part
of the future suite of off-the-shelf GN&C (Guidance/Navigation/Control) capabilities for precise safe landing

Overview of Approach

- Sustain an EDL/DDL knowledge base and simulation to capture near-term and future human and robotic mission needs and the evolving commercial and government PL&HA capabilities
- Prioritize development and infusion of cross-cutting EDL/DDL systems, sensors, avionics, and algorithms applicable to human and robotic missions
- Leverage multiple test paradigms (lab, flight, suborbital, space) to accelerate TRL advancement and infusion
- Pursue technology transfer, public-private partnerships, commercial spin-offs and spin-ins to promote closure of EDL/DDL capability gaps and the transition-into/leveraging-of commercial off-the-shelf (COTS) solutions

Landing Precision: Strategy Visualization with Focal Approaches

Landing Precision: Approach to Develop the Capabilities

Develop Technologies to Precisely Land Payloads and Avoid Landing Hazards

Leverage focal agency projects, solicitations and partnerships to

Evaluate highly-controllable EDL/DDL systems for future implementation

- study landing-precision improvements with novel aerodynamic bodies, new control architectures (e.g., dual-axis, direct-force) and GN&C advances
- closely coupled to separate EDL strategy package on "20t" landing capability

Develop PL&HA hardware for anytime landing: TRN, HD, Velocimetry

- within NASA, initially pursue lidar development and commercialization to provide
 - active terrain sensing to enable TRN and HD during descent/landing over dark, shadowed, or illuminated surfaces
 - establish a baseline capability upon which to build future PL&HA approaches
- solicit new sensor capabilities to facilitate technology transfer of NASA investments and to spin in industry advancements (e.g., advancements in radar, lidar, etc.)
- following baseline approach, pursue future multi-function sensors, multi-capability systems based on lidar, radar or other active-sensing paradigms
- pursue dedicated PL&HA computers for sensor fusion and algorithms processing in parallel with advancements in high performance spaceflight computing

Enable algorithms & processes supporting precise navigation & safe landing

- PSI modeling and validation via instrumentation to develop landing-system mitigations during terminal descent and touchdown
- mapping tools/processes to improve TRN maps, surface ops, & mission planning
- hazard detection and advanced guidance algorithms for landing-site identification and efficient descent/divert maneuvering

Plume Surface Interactions

Advanced PL&HA Algorithms

Landing Precision: Approach to Mature & Transition the Capabilities

Develop Technologies to Precisely Land Payloads and Avoid Landing Hazards

Leverage multiple test and validation paradigms to develop, mature, and infuse capabilities

- Incubate public/private partnerships and technology commercialization/dissemination for TRL maturation and to maximize infusion/availability to government and commercial spaceflight missions
 - Academic partnerships (cooperative agreements, ECF/ESI, NSTGRO) continue to foster new innovations and incubate low-TRL concepts, plus
 mature the next generation of technologists and engineers
 - SBIR/STTR solicitations have been and will continue to develop PL&HA component supply chains and commercial solutions for current and next-generation sensors, including incubate and mature new low-TRL innovations
 - Tipping Point solicitations have promoted and will continue PL&HA commercialization and infusion
 - 2018 Tipping Point has promoted multiple commercial TRN implementations
 - 2020 Tipping Point is developing a next-generation suborbital capability for closed-loop GN&C/PL&HA testing
 - Discussing future solicitations for commercial Hazard Detection and integrated PL&HA systems
 - Flight Opportunities 2022 Nighttime Precision Landing Challenge will help promote commercial development of terrain mapping sensors for hazard detection – targeting general field of active sensors (lidar, radar, IR, etc.)
 - Open NASA/industry workshops are promoting ideas incubation for public-private partnerships and infusion
 - 2021 Lunar Mapping Workshop discussed mapping tools/processes, capabilities, and needs

Landing Precision: NASA Projects Implementing the Approach

Develop Technologies to Precisely Land Payloads and Avoid Landing Hazards

- Developing and field testing lidar for active terrain sensing during descent/landing over dark, shadowed, or illuminated surfaces
- Implementing dedicated computing for sensor fusion and advanced algorithms processing in parallel with advancements in the NASA High Performance Spaceflight Computing (HPSC) initiative
- Commercializing technologies: Phase 3 SBIR for NDL commercialization, flight software going into NASA
 Software Release System, partnering with CLPS/HLS companies on TRN dev and HD infusion/commercialization

STMD/GCD LuNaMaps (Lunar Navigation Maps) Project

- Developing mapping tools and processes to provide a capability critical to future lunar missions with feedforward to Mars and beyond (Open NASA/industry workshop occurred in 2021 to discuss tools/processes/needs)
- Will generate navigation-quality lunar maps from orbital reconnaissance imagery for onboard uses
- Will enhance maps with analog field data & synthetic surface features for ground-based algorithms assessments

STMD/GCD PSI (Plume Surface Interaction) Project

- Implementing simulation models and tools to predict PSI environments and enable smart design and risk analysis
 of EDL architectures
- Developing instrumentation for ground testing (at relevant scales), collecting flight data, predicting PSI effects,
 and validating models → goal is to enable future PSI mitigation strategies

SMD Europa Lander Concept: ILS (Intelligent Lander System)

- Developing integrated TRN, Hazard Detection & Velocimetry capabilities for the unique environment of Europa
- Technologies likely have broader mission applicability beyond Europa
- Lidar-specific investments have potential for TRN and HD applications in other missions

Landing Precision: Transition Status of NASA Investments (SPLICE)

Develop Technologies to Precisely Land Payloads and Avoid Landing Hazards

STMD/GCD SPLICE (Safe & Precise Landing – Integrated Capabilities Evolution) Project – Developing and Commercializing multiple sensors, algorithms, and a computing architecture for a broadly-applicable PL&HA baseline

Lander & Primary Computer

EDL Functions

Vehicle Control

Non-PL&HA Guidance & Nav

Landing Precision: Development, Evolution & Infusion Roadmap

Landing Precision: Highest-Priority Technology Gaps & the Closure Path

Develop Technologies to Precisely Land Payloads and Avoid Landing Hazards

Current project investments are poised to address the highest-priority gaps with safe and precise landing

Current Investment (on closure path)

Current Investment (follow through)

Unfunded (Future Ask)

LuNaMaps Project

Gap: High-Resolution, Continuous Lunar Maps for Precise Landing

PSI Project

- Gap: Validated Prediction of Plume Surface Interaction (PSI) for Vehicles Landing on the Moon
- Gap: Flight Instrumentation to Acquire Plume Surface Interaction Performance Data

SPLICE Project

- Gap: Navigation and guidance technologies that provide precise knowledge and maneuver planning for Lunar missions
- Gap: Precision Landing and Hazard Avoidance Test Platform (on closure path with Masten Tipping Point award for Xogdor platform development)
- Gap: Dedicated high-performance computing for precise landing and hazard avoidance algorithms and sensor fusion (tied to Avionics Gap for HPSC – High Performance Spaceflight Computing)
- Gap: Real-time mapping technologies for active terrain relative navigation (TRN) and hazard detection and avoidance during lunar descent toward landing (active TRN is increasing in priority for lunar South Pole landings)

Landing Precision: Logical Next-Steps

NASA

Develop Technologies to Precisely Land Payloads and Avoid Landing Hazards

Summary of current approach

- SPLICE: developing sensors, computing and software for a baseline integrated capability for precise and safe landing
- LuNaMaps: developing and disseminating lunar mapping tools/processes for use by government and industry with lunar landing
- Europa Lander Concept Study: developing EDL technologies for the unique environment of Europa with potential for broader infusion
- Modeling and Architecture Studies: high-fidelity EDL simulations are continuing mission concept studies to evaluate highly-controllable EDL systems, model PSI, and assess PL&HA technologies that enable the closure of EDL gaps and the strategy evolution
- Commercialization: solicitations for public-private partnerships, SBIRs, Tipping Points, etc. are accelerating technology commercialization (spin off and spin in) plus infusion into CLPS missions and non-space applications (consider incentivizing certain EDL/PL&HA technologies for various mission classes)

Current Investment

Maintain

Future Need

What are the next steps?

- Maintain concept studies, low-TRL investments, EDL-focused SBIR solicitations, STRG/academic awards, public-private partnerships, and commercialization to identify new technologies and evolve the development strategy
- Conduct planned demonstration tests to validate models, raise TRL, and mitigate infusion risks for EDL technologies
 - Conduct testing and then disseminate PSI-mitigation approaches for landing systems
 - Conduct a lunar demonstration of the SPLICE technologies being actively used (in closed loop) within a landing system
- Continue development toward future generations of EDL and Avionics Technologies
 - HPSC: continue development & commercialize → radiation-hard, multicore processing is critical to future envisioned missions
 - Europa Lidar: monitor advancement of systems for commercialization and broader-infusion prospects
 - Active TRN: develop lidar-based TRN for anytime, anywhere global access (e.g., EDL/DDL for dark/shadowed lunar regions)
 - Pursue multi-mode EDL/PL&HA sensors that further advance and miniaturize integrated capabilities

Landing Precision: Summary

Develop Technologies to Land Payloads Within 50 m Accuracy and Avoid Landing Hazards

Strategy

 Develop safe and precise landing capabilities that increase surface accessibility for anytime and anywhere global access to locations that pose significant landing risk to missions

Goal

Infuse and commercialize technologies to become part of the future suite of COTS (Commercial Off-The-Shelf)
 GN&C capabilities for human and robotic landing missions

Approach

- Prioritize development of cross-cutting systems, sensors, avionics, and algorithms
- Sustain EDL knowledge base and simulation to capture and assess human and robotic mission needs
- Implement via NASA centers, academic partnerships, solicitations, public-private partnerships, etc.
- Leverage the NASA technology transfer process, publishing, licensing, etc. to transition technologies to COTS

Acronyms for Precision Landing Technologies

- CAN: Cooperative Agreement Notice
- CLPS: Commercial Lunar Payload Services
- DDL: Deorbit, Descent and Landing
- DLC: Descent and Landing Computer
- DSS: Descent Systems Study (project)
- DQG: Dual Quaternion Guidance
- ECF: Early Career Faculty
- EDL: Entry, Descent and Landing
- ESI: Early Stage Innovation
- ESM: Entry Systems Modeling (project)
- HD: Hazard Detection
- HDL: Hazard Detection Lidar

- HPSC: High Performance Spaceflight Computing
- IRAD: Internal Research and Development
- LVS: Lander Vision System
- NDL: Navigation Doppler Lidar
- NSTGRO: NASA Space Technology Graduate Research Opportunity
- PL&HA: Precision Landing and Hazard Avoidance
- PSI: Plume-Surface Interaction
- SBIR: Small Business Innovative Research
- SW: Software
- TP: Tipping Point (commercial partnership projects)
- TRN: Terrain Relative Navigation